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Abstract:  Realistic modeling and simulation of battlefield signal trans-
mission and sensing requires accounting for many complicated environ-
mental and mission-related factors. These factors present complex chal-
lenges because of their diversity. Yet, successful modeling and simulation 
can enable effective mission planning and can support a variety of other 
military objectives. This report describes the development of a very flexi-
ble, object-oriented software design for predicting signal transmission and 
sensing on the battlefield. This Java-language software is called Environ-
mental Awareness for Sensor and Emitter Employment (EASEE). It is in-
tended for application to a wide range of sensing modalities, and for in-
corporation into military command and control (C2) systems, decision 
support tools (DSTs), and force-on-force simulations. An initial version of 
a user interface for EASEE has been completed and a Java OpenMap im-
plementation has begun. The goal of this work is to make EASEE general 
enough to be implemented within many software architectures, which will 
enable advanced signal propagation and processing calculations in a num-
ber of modeling and simulation efforts in support of the warfighter and 
homeland security. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Background 

The performance and utility of battlefield and homeland security sensors 
depends on many complex factors, both environmental and mission-
related. This is generally true whether the sensors are ground-based or 
airborne; whether they are acoustic, seismic, optical, infrared (IR), radio 
frequency (RF), or magnetic; and whether the signal emitters originate 
from vehicles, humans, or electronic equipment. Realistic modeling and 
simulation of factors that influence sensing and signal emission can enable 
effective mission planning, improve virtual prototyping of sensor systems 
and signal processing algorithms, and support force-on-force simulations 
and doctrinal development.  

An additional challenge to develop advanced modeling and simulation ca-
pabilities is the diversity of sensors and signal emitters on the battlefield 
(including targets of interest plus natural and man-made interferences), 
and the environmental phenomena affecting those sensors and emitters.  

As an example, let us contrast modeling of acoustic and IR sensors. The 
following paragraph illustrates why different sensing modalities are often 
modeled by very different approaches, and those different approaches may 
be challenging to reconcile.  

Acoustic signatures produced by vehicles typically depend strongly on the 
vehicle type and its operation. Environmental variables such as tempera-
ture and solar loading have a minor effects on the acoustic signature. How-
ever, the impact of weather and terrain on acoustic signal propagation is 
very significant, because wind and temperature gradients refract the sound 
waves, and the sound diffracts around hills and buildings. Microphones 
usually have a nearly omnidirectional response that does not vary substan-
tially with environmental conditions. On the other hand, passive IR signa-
tures depend on differential heating and cooling of the target and back-
ground, which is a function of solar irradiation, evaporation, wind flow, 
and other factors. The atmospheric effect on the signal transmission (the 
optical depth) is often a secondary concern, at least for short transmission 
paths in clear weather. For an IR sensor, the directionality (field of view) is 
the important consideration.  
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Objectives 

The purpose of this report is to describe a software design for predicting 
the performance of various types of battlefield sensors and detecting vari-
ous types of emitters. We developed a design that is general enough to 
readily incorporate the diverse factors illustrated in the preceding para-
graph. Although our emphasis is on decision support tools (DSTs) for bat-
tlefield command and control (C2) applications, and incorporation of such 
tools into geospatial information systems (GIS) (Wilson et al. 2007; Hieb 
et al. 2007; Frankenstein and Koenig 2004), our broader intention is to 
produce a highly flexible software design that can be used in a great variety 
of modeling and simulation applications.  

Tech transfer 

EASEE is intended for application to a wide range of sensing modalities, 
and for incorporation into military command and control (C2) systems, 
decision support tools (DSTs), and force-on-force simulations. An initial 
version of a user interface for Environmental Awareness for Sensor and 
Emitter Employment (EASEE) has been completed and a Java OpenMap 
implementation has begun. The goal of this work is to make EASEE gen-
eral enough to be implemented within many software architectures, which 
will enable advanced signal propagation and processing calculations in a 
number of modeling and simulation efforts in support of the warfighter 
and homeland security. 

Outline of information 

The software design is called Environmental Awareness for Sensor and 
Emitter Employment, or EASEE. This report describes the structure of 
EASEE. We begin, in Section 2, with a short introduction to object-
oriented programming (OOP), which underlies the EASEE design. This 
section also describes the key components of DSTs such as EASEE. This 
discussion motivates the central role of statistical models for signature 
data features, which is the topic of Section 3, and statistical models for in-
ferences, which is the topic of Section 4. Section 5 discusses the informa-
tion flow from generation of the signature data features to fusion of infer-
ences, and how this is implemented in EASEE. Section 6 describes how the 
various modeling components outlined in Section 5 are built into model 
emitter and sensor platforms. Representation of the environment (atmos-
phere and terrain) is the topic of Section 7. Efficient representation of sig-
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nal transmission is discussed in Section 8. Finally, information on specific 
Java software packages comprising EASEE is provided in the Appendix.
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2 Object-Oriented Software Design 

Introduction to object-oriented programming 

The EASEE software design is formulated within the conceptual frame-
work of object-oriented programming (OOP). In this section, we provide a 
brief introduction to OOP, particularly as it is implemented in the Java 
programming language. (Readers unfamiliar with OOP or Java may find 
this helpful in understanding the remainder of the report.)  

OOP is a conceptual approach to programming. Many programming lan-
guages introduced over the past 20 years or so, including Java, C++, and 
C#, were specifically designed to facilitate OOP. OOP techniques can be 
implemented in other languages, but often the coding is more cumber-
some and the result less elegant than for a dedicated OOP language.  

OOP can perhaps be best understood by contrasting it to more familiar 
modular programming in languages such as FORTRAN 77, Pascal, and C. 
Good programming practice in these languages generally involves parti-
tioning a more complicated task into a number of subtasks, with each sub-
task being implemented in a function, procedure, or subroutine. Hence the 
emphasis is on the algorithmic formulation rather than the data upon 
which the algorithms operate. OOP, in contrast, endeavors to group data 
into collections that represent particular entities, or objects. Tasks, or 
methods, are then associated with these objects. This association between 
data collections and the tasks performed upon them is the main idea be-
hind OOP. 

Objects possess the following characteristics (Lowe 2005): 

• Type. Some examples of object types are a person, an automobile, and 
a geographic coordinate. In Java, types are called classes. 

• Identity. With regard to the types mentioned above, corresponding ex-
ample identities would be Bob, my Chevrolet, and the location of 
CRREL. In Java, objects of a particular type are said to be instances of 
the class. 

• State. Corresponding to the above, these might be cheerful, parked, 
and 43.697 N 72.311 W. In Java, the fields (variables) of the class de-
scribe its state. 
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• Behavior. Corresponding to the above, these might be hard working, 
reliable, and coordinate conversions. In Java, methods describe the be-
havior of the class. 

Some other important concepts related to OOP are inheritance, instantia-
tion, abstraction, overloading, visibility, and polymorphism.  

Inheritance refers to the ability to use one class as a basis for designing 
another. For example, a class representing fruit may be the basis for one 
representing apples, which may in turn be the basis for one representing 
McIntosh applies (Figure 1). The “apple” class is said to be a subclass (or 
extension or child) of the superclass (or base or parent) “fruit.” When a 
subclass redefines a method (behavior) defined in the parent class, that 
method is said to be overloaded. 

When an object of a class is created, it is said to be instantiated. In Java, 
constructor methods are used to create objects and initialize their fields if 
desired. An abstract class is one that cannot be instantiated. However, it 
can still serve as the basis for subclasses that can be instantiated.  

The visibility of a field or method refers to its availability outside of the 
class in which it is defined. In Java, the keyword public identifies a field 
or method that can be accessed outside of the class. Fields and methods 
that are protected can be accessed only within the class or by sub-
classes, whereas private fields and methods can be accessed only within 
the class. 

Polymorphism refers to the ability of objects of a subclass to take on the 
identity of objects of the parent class. This is actually a key reason why ob-
ject-oriented languages can be such powerful tools. When code is written 
for the highest-level object possible, all lower-level objects can automati-
cally utilize this code. This approach is consistent with scientific principles 
of identifying and modeling general features and behaviors. It is illustrated 
in Figure 1. In Java, the classes of objects can be explicitly changed if de-
sired; this is called casting. 

How does this discussion of object-oriented programming relate to our 
goal of developing a general software design accommodating different sig-
nal types, propagation models, and weather and terrain inputs? Essen-
tially, the idea is to abstract the functionality to the highest level possible 
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through application of OOP concepts of inheritance and polymorphism. 
As will become clearer in the following discussion, such an approach 
greatly facilitates the development of general purpose code.  

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh

fruit

orange apple

GalaMacintosh
 

Figure 1. Illustration of inheritance and polymorphism. Orange and apple are subclasses of 
fruit. Macintosh and Gala are subclasses of apple. Left: Methods written for fruit accept all 
classes denoted in green, which includes fruit, orange, apple, Macintosh, and Gala. Right: 

Methods written for apple accept apple, Macintosh, and Gala. 

An object-oriented view to signal transmission and sensing 

Wilson et al. (2008) suggested that a DST for predicting battlefield sensor 
performance (or the reciprocal problem, detectability of battlefield targets) 
involves the following steps: (1) information gathering and construction 
of the environmental and tactical scenario, (2) translation of this informa-
tion into parameters needed by signal and noise prediction models, (3) 
signal and noise prediction (providing a parametric description of the sig-
nal and noise from the emitter characteristics, signal propagation, and 
sensor processing), (4) calculation of sensor performance metrics (e.g., 
probability of detection or accuracy of target localization), and (5) display 
of and interaction with the information (graphical interface).  

Although all of these steps are important in the design of a satisfactory 
DST, steps (3) and (4) are the primary steps targeted by the EASEE archi-
tecture. They involve prediction and interpretation, respectively, of the 
sensor-related information. The essence of these steps is that a sensor re-
ceives a “raw” data stream containing the combined signal from the emit-
ter of interest as well as interfering background noise (clutter). This data 
stream is then processed into a set of signature data features which are 
used to infer characteristics of the signal emitter(s) of interest. Hence pre-
diction of these sensed features (step 3) and the inferences made from 
them (step 4) can be considered the key parts of the problem. This discus-
sion suggests that an object-oriented approach to battlefield signal trans-
mission and processing involves two fundamental types of objects: signa-
ture data features and inferences.  
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As will be seen, the EASEE architecture is also designed to facilitate step 
(2), translation of the environmental information, as needed to support 
steps (3) and (4). However, EASEE itself does not perform steps (1) and 
(5). We envision that these will be performed by a separate software pro-
gram that interfaces with EASEE, which we call here the user application 
interface. EASEE is designed to be transportable between many such in-
terfaces. 

The next question to be considered is what characteristics of the signature 
data features are actually needed to predict sensor performance? In gen-
eral, we cannot predict the precise values of the features in a particular cir-
cumstance, as the signals are subject to random generation mechanisms 
and propagation effects. Thus we model and predict their statistical distri-
butions; the inferences should then also be viewed in a probabilistic sense. 

The identification of signature data features and inferences as the primary 
items of interest may, in retrospect, seem obvious. However, DSTs have 
not normally been built explicitly upon this simple premise. On the con-
trary, models for signal propagation physics, noise backgrounds, and sig-
nal processing involve a wide variety of implicit and explicit statistical as-
sumptions that tend to vary greatly with the particular field (acoustics, 
optics, radio frequency, etc.). Simulations are often built around genera-
tion and processing of raw signals, a practice that can be very computa-
tionally expensive for C2 applications. When statistical models are used, 
different ones may be appropriate for describing different types of target 
signatures, propagation effects, and signal processing formulations. The 
following two sections provide more detail on the concepts of signature 
data feature and inference objects, as implemented in EASEE. 
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3 Signature Data Features 

Signature data feature is a widely used term, but rather difficult to define 
precisely. The term generally refers to information extracted from a signal 
that might identify the source of that signal. Signature data features are 
not ordinarily the raw sensor data, but rather result from some low-level 
processing of raw data, such as calibrations to remove the sensor response 
and filtering of the signal into spectral bands. Other examples might in-
clude the sound power of a harmonic line or in a standard octave band; IR 
brightness in near, shortwave, midwave, longwave, or far bands; compo-
nents of an electromagnetic field vector; or concentration of a chemical or 
biological species. Typically, the feature would represent a conservative 
quantity, such as energy or mass. In the literature on sensor data process-
ing, signature data features as described here can be associated with the 
output of level-zero information processing (Klein 2004).  

Signal model objects 

In general, signature data features vary randomly. The generation process 
is often irregular, and propagation through the environment is subject to 
random effects such as turbulence. Thus it is necessary to describe the fea-
tures with statistical models. Some examples of appropriate statistical 
models include Gaussian (normal), exponential, gamma, lognormal, 
Rayleigh, Rice-Nakagami, central chi-square, and noncentral chi-square 
probability density functions (pdfs). (Examples are in Burdic 1984; Wilson 
et al. 2002; and Nadarajah 2008.)  

The Gaussian model, while advantageous for its simplicity and tractability, 
can reasonably be applied to signal power only when the standard devia-
tion is much less than the mean; otherwise, the signal power would fre-
quently be negative, which is not physical.  

For randomly scattered signals (e.g., acoustic or RF scattering by build-
ings, vegetation, and turbulence), other pdfs are appropriate. The expo-
nential pdf describes a single, strongly scattered signal, and is a special 
case of the central chi-square pdf, which describes the sum of multiple, 
strongly scattered signals. The noncentral chi-square pdf can include a de-
terministic (non-zero mean) contribution. Since the lognormal pdf models 
variables that can be the multiplicative product of many independent, 
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positive random variables, it is a good approximation of many atmos-
pheric physical and chemical properties, including the plume size and fre-
quency distributions of transient gases from turbulent processes (Baker et 
al. 1983; Limpert et al. 2001). Hence, the lognormal pdf is well suited to 
representing concentrations of chemical or biological species that may be 
dispersed into the atmosphere. 

In some cases, the features at a sensor may not be statistically independ-
ent. The pdf should then actually be a joint pdf between multiple kinds of 
sensed data. In principle, the multiple sensed data features could be re-
garded and manipulated by processing algorithms as a single entity. To 
implement predictions involving a sensor array, such as bearing estima-
tion, joint signal models including spatial correlation functions of the sig-
nals would be necessary. 

Stitching together disparate statistical formulations, like those described 
in the preceding paragraphs, is a challenging programming task. But, it 
must be done if very general software designs are to be successfully devel-
oped. A parametric description of the pdf of a signature feature may be re-
garded as a programming object, the propagation and manipulation of 
which is central to EASEE.1 In Java, it is natural to represent each distri-
bution as a class, with each class defining the model parameters for the 
signature features. We call these signal-model classes. The signal-model 
class specifies how the parametric pdfs are to be manipulated; in particu-
lar, a method for calculating the pdf itself must be supplied. Optionally, 
translators to explicitly convert parametric pdfs from other classes may be 
included, although when possible the conversion is made automatic when 
signal-model objects are cast from one class to another. 

Classes can implement certain manipulations of the pdfs that are useful 
for probability of detection and other types of information processing. For 
example, most probability of detection calculations involve integrating the 
pdf for signal power between zero and a threshold value (the detector 
threshold), or between the threshold value and infinity. (In statistics, these 
are called cumulative distribution functions, or cdfs.) Determination of the 
threshold (quantile, or inverse cdf) corresponding to a specified probabil-
ity is also of interest. These operations are logically associated with the 

                                                                 

1 Since probability density functions, cumulative density functions, quantiles, and other statistical con-
cepts are discussed in detail elsewhere, we do not introduce these concepts here. Wilks (2005) is 
highly recommended to readers interested in an introduction to this subject. 
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signal-model class, rather than with sensor feature processors. In this 
manner they can be reused by multiple processors.  

The signal-model class must also specify how to calculate the pdf of the 
combination (sum) of two signals. This is essential to the overall architec-
ture, since multiple signals of interest and interfering signals may arrive at 
a sensor. The calculation is trivial for Gaussian (normally distributed) sig-
nals, in which case the mean and variance of the sum signal are found by 
summing the means and variances of the contributing signals. Although 
the Gaussian model is simple and tractable, it is unrealistic for many situa-
tions, as discussed earlier. Unfortunately, for other known models com-
monly used to describe random signals, such as the exponential, chi-
square, and Rice-Nakagami distributions, the pdf of the sum has a differ-
ent functional form than the pdf of the contributing signals, and in some 
cases, no analytical result is available at all. In many situations there ap-
pears to be no alternative to approximating the pdf of the combined signal.  

For efficiency, all methods in the signal-model classes are parallelized to 
operate on multiple data points, which would normally represent different 
locations or times. That is, each parameter in the pdf is given by an array 
of values, each element of which corresponds to the pdf parameter for a 
different location or time. 

Inheritance plays an important role in the EASEE signal-model implemen-
tation. A base signal-model class, called AbstractSignalModel, is de-
fined with abstract methods for calculating signal means, variances, pdfs, 
cdfs, and quantiles. Extensions (subclasses) of the abstract base class im-
plement these operations. By convention, these subclasses are assigned 
names like GaussianSignalModel, in which case a Gaussian pdf is used 
to describe the signal statistics. Similarly, GammaSignalModel would use 
a gamma-function pdf. This structuring of the signal-model classes, in 
which the actual statistical models are extensions of a parent abstract 
class, is central to the entire EASEE architecture. It allows sensor data 
processing models to be written in a way that is general for any statistical 
model for the signals. 

An object tree illustrating a set of signal model classes and inheritance 
relationships is shown in Figure 2. The abstract class for constant (time-
invariant) signal models extends the abstract base class 
(AbstractSignalModel) directly. The constant signal model class 
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(called ConstantSignalModel) involves just one parameter, namely the 
signal mean. Four other signal-model classes extend this class to variable 
signals possessing other pdf parameters in addition to the mean: these are 
for discrete-valued (multiple, fixed values), exponential, Gaussian, and 
log-normal pdfs. The gamma signal model extends the exponential. 

 

Constant 
signal model

Log-normal 
signal model

Exponential 
signal model

Gamma signal 
model

Multiple, 
constant signal 

model

Multiple, 
Gaussian signal 

model

Discrete signal 
model

Base signal 
model (abstract)

Gaussian 
signal model

To be implemented 
(for sensor arrays)

Constant 
signal model

Log-normal 
signal model

Exponential 
signal model

Gamma signal 
model

Multiple, 
constant signal 

model

Multiple, 
Gaussian signal 

model

Discrete signal 
model

Base signal 
model (abstract)

Gaussian 
signal model

To be implemented 
(for sensor arrays)

 
Figure 2. Statistical signal model inheritance tree.  

The signal model classes like GaussianSignalModel and 
GammaSignalModel are non- abstract – they implement all of the 
functionality prescribed by the AbstractSignalModel. However, they 
do not define the signature data features to which they apply. 

Feature definitions  

In EASEE, the definition of signature data features is independent from 
the signal model classes used to represent them.  The feature definition is 
specific to the kind of signal. Features are defined through Java enumera-
tions (enum types), which list the applicable signature features and their 
properties.2 This design makes it possible for multiple kinds of signals to 
use a common signal model. Enumerations are presently available for 
acoustic, optical, radio-frequency, seismic, chemical, and biological fea-
tures. The acoustic and optical enumerations are described here to illus-
trate the general design.  

                                                                 
2 A Java enum type is an alphanumeric listing of the members of a set. For example, the suits in a deck 

of cards might be defined with a Java enum containing the names “spades,” “hearts,” “clubs,” and 
“diamonds.” 



ERDC/CRREL TR-09-17 12 

At present, two enumerations have been developed for acoustical features. 
AcousticOctaveBandFeatures defines standard acoustic octave and 
third-octave bands. The definition consists of a descriptive name, and the 
lower and upper frequency bounds for the band. For example, the 
ACOUSTIC_OCTAVE_63HZ has frequency limits from 63/(21/3) to 
63(21/3), whereas the ACOUSTIC_THIRD_OCTAVE_63HZ has frequency 
limits from 63/(21/6) to 63(21/6). Methods are defined for calculating the 
arithmetic and geometric center frequencies. 
AcousticSpectralBandFeatures is similar, except that it defines 1 Hz 
(constant bandwidth) bands, from 0–500 Hz. This enumeration is useful 
for representing power spectra produced by Fourier transforms. 

The optical enumerations are provided by OpticalSignalFeatures. 
Twenty-seven different optical bands are defined, which span the ultravio-
let, visible, and infrared spectral regions. The optical bands are defined by 
their lower and upper wavelengths. For example, a visible feature 
VISIBLE is defined as extending from 380–750 nanometers (nm). For 
higher resolution applications, the visible region is broken down into six 
color regions, VISIBLE_VIOLET, VISIBLE_BLUE, VISIBLE_GREEN, 
VISIBLE_YELLOW, VISIBLE_ORANGE, and VISIBLE_RED. 
VISIBLE_GREEN, for example, extends from 495–570 nm. Additional 
spectral bands could be readily added to the Java enumerations; no other 
significant changes to the software would be needed to accommodate new 
feature definitions. 
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4 Inference Objects 

As mentioned earlier, the signature data features are processed into infer-
ences. Some examples of possible inferences are whether a target is pre-
sent (a detection inference), what kind of target it is (a classification infer-
ence), and what direction the target is in (a bearing inference). Inferences 
may also be formed by fusing inferences from multiple sensors (e.g., seis-
mic and IR detection inferences could be combined for a more robust de-
tection inference). In an actual sensing system, the features would nor-
mally be processed directly to form a hypothesis or estimate, such as 
whether a target is present. For present purposes, however, we are con-
cerned with probabilistic predictions of performance of sensors — e.g., 
probability of detection. The statistical description of an inference is spe-
cifically what we mean here by an inference object. 

An inference object class has fields describing the inference statistics and 
related information, and methods for calculating the inference statistics. 
As with the signature data features, an abstract base class is defined at the 
root of the inheritance tree (Figure 3). This class, 
AbstractInferenceModel, includes methods for checking 
compatibility between inferences. It is extended by 
PowerInferenceModel, DetectionInferenceModel, and other 
inference classes.  

PowerInferenceModel represents the mean and variance of the signal 
and noise powers at a sensor. These are to be inferred from the signal 
models at the sensor. Methods for retrieving and setting the means and 
variances, and for producing mean signal-to-noise ratios, are provided. 

DetectionInferenceModel includes fields for the probabilities of de-
tection and false alarm. Methods for producing the probabilities of false 
dismissal (missed detection) and correct dismissal are also provided, as 
are methods for combining detection inferences. The latter describe how 
to calculate the probabilities of detection and false alarm from multiple 
signature features (a feature processor) or from multiple inferences (a fu-
sion processor).  



ERDC/CRREL TR-09-17 14 

For all inferences, a null value must be defined. The main idea is that when 
an inference is combined with a null inference, its value does not change. 
For power inferences, the value of the null inference is simply zero power. 
But, for other types of inferences, the null inference is not as obvious. For 
probability of detection inferences, for example, the null inference is de-
fined as probabilities of detection and false alarm equal to zero. 

Another important type of inference is the location of a source. Such infer-
ences might be created by combining bearings and/or ranges from multi-
ple sensor platforms. Support for this type of inference is not yet fully im-
plemented in EASEE. 
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Figure 3. Inference model inheritance tree. Black boxes indicate inferences that are formed from 

signal models; green boxes indicate inferences that are formed (fused) from other inferences. 
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5 From Feature Generation to Inference 
Fusion 

Information flow 

As described up to this point, the focus of the EASEE software design is on 
statistics of signature data features (signal models), which represent units 
of information yielded by sensors. The signal models can be regarded as 
objects that must be transmitted, received, and processed, as illustrated in 
Figure 4. 
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Figure 4. Flow diagram for processing of signature data features and inferences. The signature 
data features are generated, propagated through the environment, sensed, and then processed 

into inferences. The inferences may then be fused into other inferences. Solid boxes indicate 
functionality of abstract objects, whereas the dashed lines are interfaces. 

A signature feature statistic generator, or feature generator for short, is a 
physical model for the production of signals observable by a sensor. De-
pending on the context, the feature generator might be referred to as an 
emitter, source, transmitter, or target. For present purposes, we adopt the 
first of these terms. A single feature generator may produce multiple fea-
tures, including features pertaining to different modalities, acoustic and 
electromagnetic waves for example. 

A feature propagator calculates effect of the environment on the propaga-
tion of signature feature statistics. The results of such transmission calcu-
lations generally depend on the target/sensor geometry as well as details 
of the terrain and atmospheric environments. Signal transmission is gen-
erally a linear phenomenon, which means that the transmitters operate on 
multiple features independently and in parallel. 
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The process of feature generation and propagation applies to emitters of 
interest as well as interfering background noise (clutter). In fact, the same 
computational models may be used when appropriate.  

While the operations of feature generation and propagation are conven-
iently conceptualized as distinct from a physical point of view, from the 
standpoint of software implementation they can be viewed as a single op-
eration, the purpose of which is to produce signal models at the location of 
the receiver. We term this operation feature transmission. Hence, in the 
terminology of EASEE, transmission combines feature generation and 
propagation. (In other contexts, the word transmission may apply to ei-
ther signal generation, propagation, or a combination; here, we use it 
strictly for the combination.) 

A feature sensor gathers and combines multiple transmitted signals. It can 
also apply a transfer function to the signal; that is, the levels of the features 
can be adjusted relative to one another to reflect the response of the sensor 
in different frequency regions. The feature sensor can also add signal 
model objects representing the sensor self noise (e.g., noise introduced by 
the pre-amplifier in a microphone). 

A feature processor analyzes one or more statistical descriptions of signa-
ture features, from which it draws inferences (predictions) about the per-
formance of a sensor system. Depending on the context, the feature proc-
essor might be referred to as a sensor or receiver. An inference is, 
essentially, the information desired from a sensor system.  

Conceptually, feature sensing and processing may be viewed as a single 
function, much as feature generation and propagation were earlier viewed 
as a single function (feature transmission). The combined function of fea-
ture sensing and processing could likewise be called feature reception. 

Besides being drawn directly from signature features, inferences may pos-
sibly be drawn from other inferences. For example, the probability of de-
tection of a sensor network might be calculated from probabilities of de-
tection of individual feature processors. We call a processor that draws 
inferences from other inferences a fusion processor. 
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Software implementation 

Java interfaces3 are used to represent particular capabilities for transmit-
ting signature data features and producing inferences. A feature transmit-
ter, feature receiver, or fusion processor by definition implements one of 
these interfaces. The scope of the interfaces is illustrated by the dashed 
lines in Figure 4. The interfaces follow an inheritance tree structure some-
what like (but not completely paralleling) the corresponding trees for sig-
nal models and inferences shown in Figure 2 and Figure 3. 

A feature transmitter implements an interface describing a method called 
transmitFeatures, which specifies the feature enumerations to be 
transmitted. For example, the OpticalSignalTransmission interface 
describes the transmitFeatures method needed to transmit signature 
data features belonging to OpticalSignalFeatures. 

Since feature receivers and fusion processors both produce inferences, 
they use an overlapping set of interfaces. For example, 
DetectionProcessing governs the implementation of any object that 
produces detection inferences, whether these are produced by a feature or 
fusion processor. It specifies a method called getProcessorPd, which 
produces detection inferences. But, not all inferences can sensibly be 
produced by both feature and fusion processors. For example, the 
LocationProcessing interface would likely be implemented only by a 
fusion processor, such as an algorithm that fuses target bearings from 
multiple feature processors. 

The interfaces are generally configured to produce Java ArrayList types. 
An ArrayList is a collection of objects of a certain class or its subclasses. 
For example, the transmitFeatures method in the 
OpticalSignalTransmission interface produces an ArrayList of 
AbstractSignalModel objects. Each of these objects corresponds to the 
output of a distinct signal generator/propagator combination. This signal-
model collection can then be combined with collections produced by other 
transmitters, and sent to an implementation of DetectionProcessing, 
which determines the probability of detection. 

                                                                 
3 A Java interface is a class consisting entirely of abstract methods. Subclasses implement (provide non-

abstract) versions of the methods. The interface programming technique is useful for standardizing the 
names and input arguments used by methods. 
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The interfaces encapsulate various objects described in the previous 
section, as shown in Figure 4. There are abstract base classes called 
FeatureGenerator, FeaturePropagator, and FeatureSensor. 
These are implemented by non-abstract classes such as 
SeismicFeatureGenerator and AcousticFeatureSensor. The 
latter is extended by the Microphone and HumanListener classes. 
Similarly, OpticalFeatureSensor is extended by 
GenericOpticalSensor and HumanViewer, whereas 
SeismicFeatureSensor is extended by Geophone. The Microphone 
and Geophone classes realistically capture the sensor properties of typical 
microphones and geophones. 

Feature generators and feature propagators delegate their task to select-
able generation and propagation models. These models range from very 
simple to quite complex. The purpose of having a series of selectable mod-
els is to allow users to choose between relatively fast, but low fidelity mod-
els and relatively slow, but high fidelity models. All generators have avail-
able a binary generation model, which simply produces a value of 1 when a 
feature is selected, and 0 when it is not. The acoustic and seismic genera-
tors have models that read measured signatures from a library of data 
files. Propagators share models for replication (copying of signal models), 
cylindrical wave spreading (two-dimensional propagation), spherical wave 
spreading (three-dimensional propagation), and line-of-sight propagation. 
The replication method is used to copy noise backgrounds to multiple spa-
tial locations. The acoustic feature propagator also has an impedance-
plane (acoustically absorbing ground surface) model (Attenborough et al. 
1980), and a Crank-Nicholson parabolic equation model (West et al. 
1992). More generation and propagation models will be added to EASEE 
in the future. 

The abstract base class for both feature and fusion processors is Infer-
enceProcessor. DetectionFeatureProcessor and BearingFea-
tureProcessor are examples of feature processors that extend Infer-
enceProcessor, whereas DetectionFusionProcessor and 
LocationFusionProcessor exemplify fusion processors that extend 
InferenceProcessor. 

DetectionFeatureProcessor is extended by a number of different 
classes, each of which provides a different algorithm for calculating 
probabilities of detection and false alarm. An important example of a 
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DetectionFeatureProcessor is DetectionNeymanPearson, which 
implements the Neyman-Pearson (constant false-alarm rate) criterion 
(Burdic 1984). Absolute threshold detection, relative threshold detection, 
error minimization, and Bayes risk minimization have also been coded. 

The techniques described in this section, involving interfaces and object 
collections, facilitate the creation of a very general software design. The 
main idea is that the various stages in the information flow shown in 
Figure 4 are mutually independent when each step is performed at the 
highest level of abstraction in the signal models and inferences. This 
makes code for the various components highly versatile and reusable. For 
example, when a new signal model class is written, existing feature proc-
essing algorithms operating on the abstract signal model class will accept 
this new model and continue to function without modification. Conversely, 
when a new processing algorithm is written, it will automatically operate 
on all existing and future signal models. 
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6 Platforms: Sensor and Emitter 
Representation 

A platform represents an object that transmits and/or receives signals and 
data. It incorporates feature transmitters, feature receivers, and fusion 
processors. Some specific examples of platforms that we might be inter-
ested in implementing include tactical ground sensor systems such as the 
Future Combat Systems (FCS), Tactical Unattended Ground Sensor (T-
UGS), intruder detection systems such as the Improved Remote Battlefield 
Sensor System (I-REMBASS), gateway sensor nodes for collecting and fus-
ing data from other sensors, elevated platforms with imagery packages in-
cluding unmanned aerial vehicles (UAVs), and ground vehicles such as a 
HMMWV (High Mobility Multipurpose Wheeled Vehicle) or a pick-up 
truck. Note that platforms may also represent signal transmitters in a 
more abstract sense, which is rather different from the conventional use of 
the word platform in a military context. For example, a platform could 
represent the acoustic background noise produced by a roadway, or the 
infrared image of a tree or terrain behind the target of interest. 

Configuration of a platform 

Some illustrative configurations of feature transmitters and processors for 
representing platforms are shown in Figure 5 and Figure 6. The wheeled 
ground vehicle illustrates a simple platform with signal emitters only. It 
transmits acoustic features (from the wheels and engine), seismic features 
(from the wheels), and IR features (from the external body). The UAV il-
lustrates a hybrid emitter/sensor platform. Its engine produces acoustic 
features that may be heard on the ground; it also has optical and IR cam-
eras. The intrusion detection sensor illustrates a multi-sensor platform 
that collects acoustic, seismic, and IR data; detection processing is applied 
to the sensor data individually and then at the platform level. The ground 
sensor gateway/fusion node illustrates fusion of detection and bearing in-
ferences from other sensor platforms, which are fused and made available 
for higher-level interpretation. 
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Figure 5. Configurations of feature transmitters and processors to represent a wheeled 

ground vehicle (left) and an unattended aerial vehicle (right). 
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Figure 6. Configurations of feature and fusion processors to represent an intrusion detection 

sensor (left) and a ground-sensor gateway/fusion node (right). 

Software implementation 

All EASEE platforms have a state that describes the position, velocity, and 
orientation of the platform as a function of time. Values for these quanti-
ties at multiple points in time may be specified, as will be described later 
in this section. Other state information may also be included, as desired. 
For example, it might be desirable to include information on the engine 
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transmission settings of a ground vehicle. The state information can be 
utilized by feature generators and transmitters to capture dynamics in a 
particular detection problem, such as the variation of the thermal signa-
ture of terrain with time of day. 

Just like individual transmitters, receivers, and processors, the platforms 
implement the feature transmission and inference interfaces described 
earlier. The main distinction is that the platform may encapsulate multiple 
transmitters and processors. In the wheeled ground vehicle example in 
Figure 5, a platform-level implementation of the 
AcousticOctaveBandTransmission interface would encapsulate two 
transmitters, one for the acoustic emissions of the engine and one for the 
wheels. The signature data features for each of these transmitters would 
then be bundled into a Java ArrayList collection. 

Consistent with the development pattern for other types of objects in 
EASEE, a generic abstract platform class is at the base of the inheritance 
tree. This generic platform contains no transmitters, receivers, or fusion 
processors. But, it does define a pair of lists that play a key role in the 
EASEE architecture. One listing specifies the platforms to be queried for 
signature data features, whereas the other specifies the platforms to be 
queried for inferences. The former can be conceptualized to indicate those 
platforms in close enough proximity that their signals are able to propa-
gate through the environment and reach the platform of interest. The lat-
ter corresponds to those platforms connected through a communication 
network. 

Implementations for specific platform configurations (such as those 
shown in Figure 5 and Figure 6) add the feature generators, feature propa-
gators, feature sensors, feature processors, and fusion processors, all as 
needed to create the desired functionality. The general idea is that these 
platforms represent a general configuration of interest, as illustrated in 
these figures. Instances of the platform classes are constructed with spe-
cific characteristics. For example, instances of wheeled ground vehicles 
could be a specific type of HMMWV or a Toyota Tacoma pick-up truck. 
The signature generators would use essentially the same code, but produce 
somewhat different signatures. 

The EASEE platform design and interfaces are configured to support a 
data-pull (as opposed to data-push) style of information flow. In a data- 
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push architecture, the signal emitters (transmitters) produce the signature 
data features they are capable of producing and then send the data to the 
sensors (feature processors). In data-pull architecture, the sensors (feature 
processors) request signature feature data, and then the signal emitters 
(transmitters) provide it. 

An earlier acoustic/seismic DST, the Sensor Performance Evaluator for 
Battlefield Environments (SPEBE) program (Wilson et al. 2001), imple-
mented a data-push scheme. The main drawback of such a scheme is that, 
without some additional exchange of information or loss of fidelity, all 
emitter information must be generated and transmitted, so that the sensor 
platforms can then select what information they need. For example, an 
emitter platform may include IR, optical, EM, magnetic, acoustic, and 
seismic signatures. Lacking knowledge of the characteristics of the sensor 
field, all of this information would have to be pushed. If the sensor field 
actually consisted only of, say, seismic sensors, this would waste computa-
tional resources.  

In data-pull architecture, however, the signal processors request and re-
ceive only the needed information. Hence we have chosen to implement 
this approach for EASEE. This approach is also consistent with modern 
server-client architectures. Overall, the process begins with the user inter-
face application sending a request for a prediction (inference) to the plat-
forms. The platforms then determine which signature data features and 
inferences will be needed to fill this request, and request the features from 
other platforms based on the lists mentioned earlier. Eventually, the de-
sired inferences are calculated and sent to the user interface application. 

Platform positioning and problem viability 

A viable signal transmission and detection problem must contain at least 
the following three elements: (1) a transmitter of interest (which provides 
the signal), (2) an interfering transmitter (which provides the noise), and 
(3) a receiver (which senses the signal and noise). Many real-world prob-
lems actually involve multiple transmitters and receivers. In this section, 
we consider how many and what combinations of transmitters and receiv-
ers should be accommodated in a software design, and the constraints on 
their allowable positions. This is important for designing an appropriate 
degree of flexibility into platform representations and employing them. 
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Let us first consider a straightforward problem in which we have a single 
transmitter of interest and want to determine at what locations in space it 
can be detected. (Positioning of the interfering noise transmitter will be 
discussed momentarily.) This is sometimes called the footprint of the 
transmitter. This situation can be implemented systematically by placing 
the transmitter at a single fixed position in space, and varying the receiver 
position across a spatial grid. The density and geometry of the grid are de-
termined by user preferences and computational considerations – too 
large a grid will result in a too long a calculation. The grid may consist of a 
regular Cartesian grid or a polygonal terrain representation. 

Also of interest is the reciprocal of the preceding problem, in which there 
is a single receiver and we wish to know transmitter locations where detec-
tion will occur. This is sometimes called the footprint of the receiver. We 
can implement this problem by placing the receiver at a single fixed posi-
tion and then varying the transmitter position across a spatial grid. 

We refer here to a receiver or transmitter position that is varied across a 
spatial grid as variable. Calculation results corresponding to the position 
of the variable receiver or transmitter will typically be overlaid on the ter-
rain display as a map layer.  

Does it make sense to define a problem in which both the receiver and 
transmitter positions are variable? The answer is both “yes” and “no.” If 
the positions are varied independently, and there are N locations for each, 
then there would be N2 problems to solve. Such a computation could be 
time-consuming and confusing to display. On the other hand, there may 
be situations where it is reasonable to vary the positions of the receiver 
and transmitter in a manner that their relative positions and orientations 
are fixed. Solution of such a problem involves only N locations. In particu-
lar, they could both be at the same grid position. This would make sense if, 
say, there is a microphone positioned on a vehicle that is emitting acoustic 
noise, in which case the transmitter and receiver move together.  

More complicated problems might involve multiple fixed transmitters 
and/or multiple fixed receivers. For example, one might be interested in 
determining the locations where a transmitter could be detected by a net-
work of receivers. In this case, we have multiple fixed receivers but a vari-
able transmitter position. Similarly, we could have multiple fixed transmit-
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ters contributing simultaneously to the signals received by a single receiver 
for which the position is variable. 

Another twist to the problem is the existence of interfering transmitters. 
The interfering transmitters are often referred to as noise or nuisance 
sources. There could be multiple interfering transmitters. It is also possi-
ble to consider an interfering transmitter for which the position is variable. 
Typically, we would sum the contributions from the interfering transmit-
ters together, and separately sum the contributions from the transmitters 
of interest; these quantities then represent the signal and noise in the de-
tection problem.  

Finally, we might think of a transmitter as being distributed in space. For 
example, the noise produced by traffic is distributed along a roadway, and 
the noise produced by wind blowing through a forest might be regarded as 
distributed in volume. In a numerical implementation, the distributed 
transmitter could be represented at many discrete locations on a computa-
tional grid, and its strength adjusted in accordance with the resolution of 
the grid. While in some situations such a representation might be useful, 
typically it will result in a large number of transmitters, the signals of 
which must be propagated (transmitted) through the environment, and 
this would likely be a very computationally intensive process. A practical 
resolution is to represent the actual field produced by the distributed 
transmitters directly. This is precisely what a receiver would observe and is 
often measured directly as the “background noise” for a particular prob-
lem.  

All of the situations described above (except for the N2 problem) can be 
addressed in the following way. We solve N problems involving one or 
more transmitters of interest, one or more interfering transmitters, and 
one or more receivers in parallel. If desired, each transmitter/receiver can 
be at a fixed position in space for each of these N problems, or it can vary 
among locations on a spatial grid.  

This observation motivates the structure of the platform state description 
in EASEE. As mentioned earlier, the state may describe multiple platform 
locations at each point in time. Specifically, all platforms in a given prob-
lem are allowed to have N locations at a given time. It is left to the user ap-
plication interface driving the EASEE calculation to set up the locations in 
a manner consistent with the problem posed by the user. 
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7 Environmental Representation 

We use the term scenario for the environmental (atmospheric and terrain) 
information needed by a calculation. In general, the scenario may impact 
all stages of a sensor performance calculation. For example, an IR signa-
ture feature generator is dependent upon factors that include the solar an-
gle, cloud cover, and wind. The signal propagation process is strongly af-
fected by the environmental conditions, particularly for acoustics and 
seismics. The performance of a seismic sensor is affected by its coupling to 
the ground, which depends on the ground properties. 

One of the main challenges in representing the environment is to 
accommodate multiple types of data specifications. The weather may be 
described by data from a numerical forecast model or by selecting from a 
library of typical weather conditions. Terrain elevation data comes in 
varying resolutions (e.g., varying levels of digital terrain elevation data 
[DTED] and grid structures [Cartesian, polygonal, etc.]).  

In EASEE, scenario translators play the important role of converting the 
scenario information into parameters needed by platforms and their fea-
ture generators, propagators, and processors. The translators implement 
Step 2 of the process described in Section 2. Generally speaking, a differ-
ent translator is needed for each combination of scenario specification and 
feature generator, propagator, and processor. In practice, coding of sce-
nario translators is a very important and challenging part of the predictive 
process. It often involves physically based assimilation methods designed 
to make optimal use of available information and to supply reasonable 
values for unavailable parameters. 

Two environmental scenario classes have been implemented in EASEE. 
Both are extensions of the abstract parent class EnvironScenario, 
which includes only a time stamp for the environmental data and a digital 
elevation map describing the terrain elevations. 

One of the environmental scenario classes, EnvironScenarioHomo, is 
intended to be the simplest possible description of the environment. It in-
cludes objects for the following: (1) the time of the atmospheric/terrain 
observation, (2) the atmosphere as humid air (a mixture of dry air and wa-



ERDC/CRREL TR-09-17 27 

ter vapor, each of which are assumed to be ideal gases), (3) the subsurface 
as an isotropic, linear, lossless solid, and (4) the local height of the ground 
above sea level. Some additional information on these object representa-
tions is provided in the Appendix. 

The other environmental scenario class, EnvironScenarioVert, 
supports specifications of height-dependent atmospheric properties, 
depth-dependent subsurface properties, and a digital elevation map 
(DEM). It includes objects for the following:  

• the time of the atmospheric/terrain observation 

• the vertical profiles of atmospheric wind, temperature, pressure, and 
humidity 

• the low-, mid-, and high-altitude cloud fractions 

• an atmospheric surface-layer parameterization for heat, momentum, 
and humidity exchange with the ground surface (which can be used to de-
scribe turbulence) 

• a parameterization of the aerodynamic, acoustic, and optical properties 
of the ground 

• a geographic grid representing the DEM 

• the vertical profiles of subsurface density, compressional wave speed 
and attenuation, and shear wave speed and attenuation 

Availability of scenario translation for a particular environmental 
representation is declared at the transmitter, processor, or platform level 
through implementation of a corresponding interface. 
EnvironHomoTranslation is for translation of homogeneous 
environmental descriptions, EnvironVertProfTranslation is for 
translations environmental descriptions with vertical profiles of 
atmospheric and subsurface variables. When a platform supports a 
specified interface, all signal transmitters and processors on the platform 
must also support that interface. 
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8 Signal Transmission Grids 

The EASEE architecture has been designed to accommodate signal propa-
gation models possessing varying degrees of fidelity. To this end, signal 
propagation is described by transmission grids possessing various spatial 
symmetry properties. The grid describes how the signal depends with dis-
tance and direction from the source, and also how it depends on the source 
position, if this is indeed the case. The parameters stored on the transmis-
sion grid are signal power (or another conservative quantity such as mass), 
and the azimuthal and elevation angles of the propagation direction. The 
appropriateness of a given grid will depend on the signal modality (e.g., 
acoustic, seismic, radio frequency, optical, etc.) as well as the environ-
mental model. Grids of lower complexity can generally be promoted to 
grids of higher complexity.  

Transmission grids are available in two general varieties: structured and 
unstructured. Structured grids are appropriate when the source and/or 
receiver positions occur in a regular, geometric pattern. Unstructured 
grids are appropriate when the positions are irregular. In EASEE, struc-
tured grids are also intended for calculations performed in free space or 
above a flat ground, because calculations performed on these grids do not 
incorporate information on the digital elevation map (terrain elevations). 
Calculations performed on unstructured grids do incorporate the DEM.  

The simplest type of structured grid is for propagation problems in which 
the signal strength depends only on the distance from the source to the re-
ceiver; that is, the propagation is independent of the source position and 
the direction to the receiver. Since the propagation thus depends on only 
one variable (distance), the calculations can be stored in a one-
dimensional array. We call this format a homogeneous, isotropic grid. 
Such a format might be appropriate if the environment is horizontally 
stratified, if the signal propagation is unaffected by the ground, and if 
there are no significant horizontal variations in the atmosphere. 

The next considered degree of complexity is for problems in which the 
propagation depends on the height of the source and the height of the re-
ceiver, as well as the horizontal distance (called the range) between them. 
This situation applies, for example, to acoustic or electromagnetic propa-
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gation in an atmosphere with horizontally stratified density or thermal 
structure, and to seismic propagation when the ground has horizontally 
stratified density, wave speeds, and bulk moduli. This type of grid is 
termed vertically inhomogeneous and horizontally isotropic and is 3D in 
its storage requirements.  

In some situations, such as sound propagation in the presence of wind, it 
becomes important to account for the horizontal directionality of the 
propagation. Hence the next degree of complexity is the vertically inho-
mogeneous and horizontally anisotropic grid, which involves 4D storage. 
Here, the propagation depends on the source height, receiver height, 
range, and azimuthal direction of the receiver relative to the source.  

All of the grids discussed to this point have assumed that the propagation 
does not depend on the absolute position of the source. Such an assump-
tion breaks down when there is substantial horizontal variability in the en-
vironment. In such situations we must resort to the most general form of 
grid, namely where the signal propagation depends on the 3-D coordinates 
of both the source and receiver. The storage requirements in general in-
clude the x, y, and z Cartesian coordinates of both the source and the re-
ceiver, and thus are 6-D. EASEE incorporates one variety of structured  
6-D grid, namely a Cartesian (rectangular) grid mesh. This format can be 
applied to situations where each of the coordinate axes of the sources and 
receivers is independent.  

As mentioned earlier, for the unstructured grids, the source and receiver 
coordinates need not follow any regular pattern. EASEE incorporates two 
general formats of unstructured grids: dual unstructured and fully un-
structured. The dual unstructured grid specifies the source and receiver 
locations independently. A calculation is performed for each combination 
of source and receiver locations. Hence, if Ns source locations are speci-
fied, and Nr receiver locations are specified, the number of grid elements is 
Ns Nr. 

The fully unstructured grid has a single list that specifies pairs of source 
and receiver positions; that is, N pairs of source and receiver positions are 
specified. The transmission is calculated for each of the N pairs of source 
and receiver positions. 
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The transmission grids may be constructed either by specifying only the 
signal power, or by specifying the signal power as well as the propagation 
directions. If the directions are not specified, propagation is assumed to be 
line-of-sight. That is, the direction of the receiver relative to the source is 
calculated, and used to infer the propagation direction. 

Propagation calculations in EASEE are actually explicitly performed on 
unstructured grids. If a single source or receiver position enters into the 
calculation, a dual unstructured grid method is called. If multiple (but 
equal in number) source and receiver positions are specified, as discussed 
in Sec. 6, a fully unstructured grid is used. A new signal model is then con-
structed at each grid location. The reason for emphasizing the unstruc-
tured grid is that the source and receiver locations may be arbitrary, or 
they may be distributed across a geographic grid, such as a lati-
tude/longitude coordinate system, that does not lead to equal spacing. 

Still, the structured grids play an important, underlying role in EASEE. 
Propagation models often naturally produce structured grids. For exam-
ple, the previously mentioned Crank-Nicholson parabolic equation natu-
rally produces vertically inhomogeneous and horizontally anisotropic (4D) 
grid. It is thus convenient to perform and store the calculation on this grid, 
rather than a full 6D grid. The calculation results can then be interpolated 
onto an unstructured grid as needed.  
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9 Conclusions 

The purpose of this report has been to describe a flexible, object-oriented 
software design for predicting signal transmission and sensing on the bat-
tlefield. The Java-language software based on this design is called Envi-
ronmental Awareness for Sensor and Emitter Employment, or EASEE.  

The central elements to the EASEE software design are statistical models 
for signature data features and inferences. EASEE provides the “glue” for 
tying together models for signature generation, propagation, sensing, and 
processing, in a manner that decouples these models from specific envi-
ronmental descriptions. 

At the time of this writing, an initial version of a MATLAB user interface for 
EASEE has been completed. We have begun but have not yet completed 
implementation of a Java OpenMap implementation. Our intention is to 
make EASEE general enough so that it can be implemented within many 
other software architectures, and thus enable advanced signal propagation 
and processing calculations in a great variety of modeling and simulation 
efforts supporting the warfighter and homeland security. 
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Appendix: Overview of EASEE Java Packages  

This appendix provides an overview of the Java packages comprising 
EASEE. It describes the various packages and classes at the time of this 
report’s writing. The EASEE software is expected to continue to evolve. 

Up-to-date documentation of a more technical nature, describing in detail 
the various classes and their fields and methods, is distributed with the 
software in conventional JavaDoc format. 

Package mil.army.usace.easee.signalmodels 

This package defines the signal models used to describe statistics of the 
signature data features. Much background on this package has already 
been provided in Section 3. For illustrative purposes, Figure 7 shows the 
branch of the inheritance tree leading to GammaSignalModel, along with 
the particular methods defined at each stage. 

• abstract class AbstractSignalModel
– abstract methods getFeatureInd and getFeatureClass (index and class of signature 

data feature), checkFeatures etc. (check whether signal models are for same features), 
pdfRule (probability density function), cdfRule (cumulative density function), 
quantileRule (quantile function), sumRule (sum of two random variables), getMean, 
getVar, methods getFeatureList, setClassMark, getClassMark, isNoise (interfering 
noise or signal of interest), setNoise, combineSignal and combineNoise.

• class ConstantSignalModel extends AbstractSignalModel
– defines signal mean power, mean azimuth, and mean elevation
– implements methods pdfRule, cdfRule, quantileRule, sumRule, getMean, getVar for 

a constant signal distribution
– constructs signal features by setting feature index and class, classification 

marking, and whether feature is interfering noise or signal of interest

• class ExponentialSignalModel extends ConstantSignalModel
– overrides methods for pdfRule, cdfRule, and quantileRule
– construction analogous to ConstantSignalModel

• class GammaSignalModel extends ExponentialSignalModel
– overrides methods for pdfRule, cdfRule, and quantileRule
– adds variance parameter, methods to set variance, alpha, and beta
– construction analogous to ExponentialSignalModel  

Figure 7. Derivation of the GammaSignalModel class, showing its parent classes and 
inherited methods. 
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Package mil.army.usace.easee.spectra 

This package provides a flexible representation for spectra as a sequence of 
bands, each given by a frequency-dependent power law. The approach is 
described by Wilson and Torrey (2006). 

At present, the banded power-law representation is used mainly to store 
acoustic and seismic spectra, and to convert them to signature data fea-
tures as needed. However, this representation may be used in the future as 
a basis for building more flexible models for signature data features pos-
sessing variable center frequencies and bandwidths.  

Package mil.army.usace.easee.infermodels 

This package deals with inference modeling. Much of its functionality was 
described in Section 4. Here, Figure 8 illustrates the inheritance tree for 
processing features into detection inferences, along with the particular 
methods defined at each stage. 

 
Figure 8. Derivation of the detection feature and fusion processors, showing parent classes 

and inherited methods. 
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Package mil.army.usace.easee.transmit 

The transmit package contains the classes for representing and manipu-
lating signal transmission grids as described in Section 8. It also includes 
signal propagation models that are common to different kinds of signal 
types. These include methods for signal replication, cylindrical and spheri-
cal wave spreading, and for line-of-sight analysis. 

Packages mil.army.usace.easee.acoustic, 
mil.army.usace.easee.seismic, mil.army.usace.easee.optical, and 
mil.army.usace.easee.radiofreq 

Some background pertinent to these packages, which implement specific 
signal modalities, was provided in Section 5. These packages consist of five 
basic components.  

1. Java enumeration classes defining the signal features and their properties.  
2. A feature generator class (extension of the base FeatureGenerator 

class) specific to the signal modality. This feature generator might call one 
or more generation models included in the package.  

3. A feature propagator class (extension of the base FeaturePropagator 
class) specific to the signal modality. This feature propagator might call 
one or more propagation models included in the package. 

4. A feature sensor class (extension of the base FeatureSensor class) spe-
cific to the signal modality. One or more extensions to this feature sensor 
may be provided to implement particular types of sensors. 

5. Descriptions of environmental properties specific to the signal modality.  

To clarify this last item, we focus on the acoustic package as an 
example. This package defines an abstract class called AcousticMedium. 
This class includes methods for retrieving and calculating the acoustic 
wave number, attenuation, phase speed, characteristic impedance, 
complex bulk modulus, and complex bulk density. Several classes extend 
these methods. Of these, FluidMedium is the simplest. It provides a two-
parameter representation of a lossless fluid described by the fluid density 
and bulk modulus. Another extension, AirMedium, builds on the 
HumidAir class (from the EnvironScenario package) by adding 
methods to calculate the sound speed and acoustic attenuation in humid 
air. RelaxMedium and ZwikkerKostenMedium provide acoustic 
properties appropriate for propagation in a porous material such as soil or 
snow. 
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Package mil.army.usace.easee.platform 

Platforms were described in Section 6. As indicated there, the abstract 
Platform class serves as the basis for all other platform designs. A 
platform includes a specification of its state, which is an object of the 
PlatformState class, to be described shortly. Signal generators and 
propagators, sensors, and feature and fusion processors, are also 
instantiated by the platform. Platforms also include links for signature 
data feature and inference requests, as described in Section 6. 

The PlatformState class contains an array of times. The initial time in 
the array specifies the time at which the platform is assumed to come into 
existence. Subsequent times represent changes in state. For each time, 
new spatial coordinates, velocities, attitude angles, and state variables are 
specified. The coordinates are specified as a GeoGrid3D object, which is 
part of the timeandspace package. The interpretation of the state vari-
ables is specific to a platform. 

Package mil.army.usace.easee.timeandspace 

This package includes a number of classes for manipulating time and 
space coordinates.  

The TimeCoord class is basically a wrapper around a 
GregorianCalendar object, which is a part of the Java API (Application 
Interface). It simplifies setting and retrieval of dates and times, 
conversions between Universal Coordinated Time (UTC) and local time, 
and provides the date and time in a string format that may be used by 
software that interfaces to EASEE. 

The GeoCoord class specifies geographic coordinates on the Earth’s sur-
face. The coordinates can be set or retrieved in latitude/longitude or Uni-
versal Transverse Mercator (UTM) formats. Functionality is also provided 
to calculate the distance, relative northing, and relative easting between 
multiple points. GeoCoord3D extends GeoCoord to include an altitude 
specification which may be specified as either height above sea level or 
height above local ground level. 

The GeoGrid class provides a two-dimensional grid of latitudes and longi-
tudes. The origin and spacing of the grid are set by the user. Similarly, 
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GeoGrid3D is a three-dimensional grid, with latitude, longitude, and alti-
tude. 

The ViewShed contains static methods for converting between height 
above ground level (AGL) and above sea level (ASL), for analyzing lines of 
sight, and for determining viewing angles on varying terrain. 

Package mil.army.usace.easee.environscenario 

This package provides the environmental representation capability as de-
scribed in Section 7. It includes some capabilities that may be of general 
interest for atmospheric and seismic modeling. 

The AtmosVertProf class defines mean vertical profiles for the wind, 
temperature, humidity, and pressure in the atmosphere. It includes meth-
ods for setting and retrieving the profiles, and for converting between dif-
ferent wind coordinate systems, temperature systems, and humidity rep-
resentations.  

The HumidAir class represents the properties of dry air mixed with water 
vapor. It defines a number of constants for thermodynamic properties of 
dry air and water vapor, and methods for getting and setting the 
temperature, pressure, density, and humidity. (Note that, for an ideal gas, 
only two quantities among the temperature, pressure, and density are 
independent.) Humidity may be specified as mixing ratio, specific 
humidity, relative humidity, and other options; the class converts between 
these representations. Methods are also provided for calculating the 
viscosity, thermal conductivity, Prandtl number, and saturation vapor 
pressure. The HumidAir class complements AtmosVertProf, since it 
allows quantities to be calculated, such as density, that are not explicitly 
modeled as vertical profiles in AtmosVertProf. 

The AtmosSurfLayer class represents a turbulent, constant-flux atmos-
pheric surface layer (ASL). (Typically, the surface layer occupies the low-
ermost 30–300 m of the atmosphere.) The class defines the parameters 
necessary to represent a turbulent ASL, including the friction velocity, sen-
sible heat flux, latent heat flux, roughness length, and wind direction. Con-
structors are generally used to set these fields. Then, the near-ground 
wind, temperature, and humidity profiles can be retrieved.  
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The CloudFrac class is a very simple one, as it represents the fraction of 
the sky that is blocked by clouds at low, middle, and high altitudes.  

The GroundSurface class represents the hydraulic, optical, and acousti-
cal properties of the ground surface. (Note that aerodynamic properties of 
the ground are defined in the AtmosSurfLayer class.) Among these are 
the permeability, static flow resistivity, volume porosity, emissivity, and 
albedo. Typical values for these quantities are provided for common 
ground surfaces such as grass, sand, and snow. 

The counterpart of AtmosVertProf, but for subsurface properties, is the 
SeismicVertProf class. It defines vertical profiles for the compressional 
wave speed, shear-wave speed, compressional wave attenuation quality 
factor, shear-wave attenuation quality factor, and density in the ground.  

The SolidIsoLinear complements SeismicVertProf much as 
HumidAir complements AtmosVertProf. SolidIsoLinear includes 
typical values for the density, compressional wave speed, and shear-wave 
speed of a number of typical ground types such as water, concrete, sand, 
shale, basalt, etc. Objects may be created by specifying density, 
compressional wave speed, and shear-wave speed or by density, bulk 
modulus, and shear modulus. Methods are provided for retrieving the 
wave speeds, moduli, Lamé constants, Poisson’s ratio, etc. 
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